organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethyl 2-chloro-3-tosylmaleate

Alireza Abbasi,^a* Ebrahim Kianmehr,^a Saeideh Beheshti^a and Lars Eriksson^b

^aSchool of Chemistry, University College of Science, University of Tehran, Tehran, Iran, and ^bDepartment of Physical, Inorganic and Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden Correspondence e-mail: aabbasi@khayam.ut.ac.ir

Received 26 July 2007; accepted 8 August 2007

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.127; data-to-parameter ratio = 17.0.

The title compound, C₁₃H₁₃ClO₆S, contains two methoxycarbonyl groups in a cis arrangement, with a dihedral angle of $79.9 (1)^{\circ}$ between the least-squares planes defined by the two methoxycarbonyl fragments. Weak van der Waals interactions between the molecules are effective in the molecular packing. This is the first X-ray structure reported for a tosylmaleate derivative which can be used as a pharmaceutical primary material.

Related literature

For applications of vinylsulfonyl-containing compounds, see: Zhu et al. (1989).

a = 12.4167 (14) Å

b = 12.9964 (13) Å

c = 9.5511 (10) Å

Experimental

Crystal data
C13H13ClO6S
$M_r = 332.74$
Monoclinic, $P2_1/c$

$\beta = 100.879 \ (10)^{\circ}$
V = 1513.6 (3) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Oxford Diffraction Xcalibur2 with a	9792 measured reflections
Sapphire-3 CCD detector	3298 independent reflections
diffractometer	2475 reflections with $I > 2\sigma($
Absorption correction: numerical	$R_{\rm int} = 0.070$
(X-RED; Stoe & Cie, 1997)	
$T_{\min} = 0.815, \ T_{\max} = 0.930$	
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.127$ 194 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$ S = 0.99 $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ 3298 reflections

 $\mu = 0.41 \text{ mm}^{-1}$ T = 290 (2) K

 $0.5 \times 0.2 \times 0.1 \text{ mm}$

 $I > 2\sigma(I)$

Table 1 Selected torsion angles (°).

C5-C1-C2-C3	-7.4(3)	C5-C1-C2-Cl1	171.16 (14)
S1-C1-C2-C3	177.75 (12)	S1-C1-C2-Cl1	-3.7 (2)

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: PLATON (Spek, 2003).

This work was supported by grants from the University of Tehran and the Swedish Research Council.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2129).

References

- Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
- Oxford Diffraction. (2003). CrysAlis CCD and CrysAlis RED. Version 1.171.29.2. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (1997). X-RED. Version 1.09. Stoe & Cie GmbH, Darmstadt, Germany
- Zhu, Z.-H., Chen, K.-C., Li, J.-X., Chen, S.-L. & Wang, S.-L. (1989). Dyes Pigm. 11, 277-291.

supplementary materials

Acta Cryst. (2007). E63, o3774 [doi:10.1107/S1600536807039128]

Dimethyl 2-chloro-3-tosylmaleate

A. Abbasi, E. Kianmehr, S. Beheshti and L. Eriksson

Comment

Vinylsulfonyl groups are valuable building blocks which can be used in fiber-reactive azo dyes, and also in plastic films and photographic materials (Zhu *et al.*, 1989). The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The two methoxycarbonyl groups are in *cis* configuration, shown by the torsion angle C5—C1—C2—C3 close to 0°. The interplanar angle between the least-squares planes defined by O6/C3/C2/O5/C4 and O4/C5/C1/O3/C6 is 79.9 (1)°. The four atoms connected to ethylene functionality (C1=C2) only slightly deviate from planarity. Relatively weak intermolecular van der Waals interactions are present between neighboring molecules, stabilizing the crystal structure.

Experimental

To a solution of dimethyl acetylenedicarboxylate (DMAD, 566 mg, 4.0 mmol) and *p*-toluenesulfonyl chloride (4.0 mmol) in dry THF (15 ml) under a nitrogen atmosphere, pyridine (48 mg, 0.6 mmol) was added and the reaction mixture was stirred for 16 h at room temperature. The solvent was evaporated and the residue was chromatographed on a silicagel column, using hexane-ethylacetate (90/10) as eluent, giving the pure product.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(\text{carrier C})$ for aromatic and methyl group, respectively. C—H bond lengths were set to 0.93 (aromatic CH) and 0.96 Å (methyl CH₃), and methyl groups were allowed to rotate about their C—C σ bonds.

Figures

Fig. 1. Molecular structure of (I), with 50% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radii.

Dimethyl 2-chloro-3-tosylmaleate

Crystal data $C_{13}H_{13}ClO_6S$ $M_r = 332.74$ Monoclinic, $P2_1/c$

 $F_{000} = 688$ $D_{\rm x} = 1.460 {\rm Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 {\rm \AA}$

supplementary materials

Hall symbol: -P 2ybc
<i>a</i> = 12.4167 (14) Å
<i>b</i> = 12.9964 (13) Å
<i>c</i> = 9.5511 (10) Å
$\beta = 100.879 \ (10)^{\circ}$
$V = 1513.6 (3) \text{ Å}^3$
Z = 4

Data collection

Cell parameters from 9792 reflections $\theta = 3.8-32.1^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$ T = 290 (2) KNeedle, colourless $0.5 \times 0.2 \times 0.1 \text{ mm}$

Oxford Diffraction X-calibur2 with a Sapphire-3	
CCD detector	3298 independent reflections
diffractometer	
Radiation source: fine-focus sealed tube	2475 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.070$
Detector resolution: 12 pixels mm ⁻¹	$\theta_{\text{max}} = 27.0^{\circ}$
T = 290(2) K	$\theta_{\min} = 3.8^{\circ}$
ω scans at different ϕ	$h = -15 \rightarrow 11$
Absorption correction: numerical	k = -16 + 16
(X-RED; Stoe & Cie, 1997)	$k = -16 \rightarrow 16$
$T_{\min} = 0.815, \ T_{\max} = 0.930$	$l = -12 \rightarrow 12$
9792 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_0^2) + (0.0868P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.127$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.99	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
3298 reflections	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
194 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: $0.040(4)$

methods Extinction coefficient: 0.040 (4)

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.29026 (4)	0.12068 (4)	0.04566 (5)	0.03976 (17)
Cl1	0.14986 (4)	0.12677 (4)	0.30129 (5)	0.04899 (19)
01	0.23422 (11)	0.21700 (10)	0.04155 (14)	0.0519 (4)
O2	0.32811 (12)	0.08590 (13)	-0.07918 (14)	0.0561 (4)
O3	0.14474 (11)	-0.06627 (11)	-0.13420 (14)	0.0503 (4)
O4	0.26860 (14)	-0.14406 (13)	0.03464 (18)	0.0694 (5)

O5	0.03110 (11)	-0.05397 (11)	0.33034 (14)	0.0511 (4)
O6	0.03986 (14)	-0.12829 (11)	0.12083 (17)	0.0615 (4)
C1	0.20074 (14)	0.01944 (13)	0.08335 (18)	0.0362 (4)
C2	0.14118 (14)	0.02430 (13)	0.18619 (18)	0.0364 (4)
C3	0.06504 (14)	-0.06168 (14)	0.2081 (2)	0.0414 (4)
C4	-0.0495 (2)	-0.1296 (2)	0.3566 (3)	0.0689 (7)
H4A	-0.1066	-0.1351	0.2738	0.103*
H4B	-0.0805	-0.1082	0.4366	0.103*
H4C	-0.0145	-0.1952	0.3766	0.103*
C5	0.20747 (15)	-0.07510 (15)	-0.0063 (2)	0.0433 (4)
C6	0.1592 (2)	-0.1451 (2)	-0.2352 (3)	0.0730 (7)
H6A	0.2359	-0.1536	-0.2356	0.109*
H6B	0.1217	-0.1255	-0.3286	0.109*
H6C	0.1295	-0.2088	-0.2085	0.109*
C7	0.40081 (14)	0.11797 (14)	0.19050 (19)	0.0388 (4)
C8	0.47378 (16)	0.03585 (16)	0.2040 (2)	0.0505 (5)
H8	0.4648	-0.0168	0.1368	0.061*
C9	0.56025 (17)	0.03382 (18)	0.3196 (3)	0.0576 (6)
Н9	0.6094	-0.0209	0.3293	0.069*
C10	0.57497 (16)	0.11112 (17)	0.4204 (2)	0.0513 (5)
C11	0.50243 (18)	0.19318 (18)	0.4025 (2)	0.0567 (5)
H11	0.5128	0.2467	0.4683	0.068*
C12	0.41541 (16)	0.19742 (16)	0.2894 (2)	0.0492 (5)
H12	0.3671	0.2528	0.2794	0.059*
C13	0.6695 (2)	0.1068 (2)	0.5454 (3)	0.0758 (8)
H13A	0.6709	0.0407	0.5905	0.114*
H13B	0.6607	0.1595	0.6127	0.114*
H13C	0.7371	0.1175	0.5125	0.114*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0468 (3)	0.0380 (3)	0.0358 (3)	-0.00102 (18)	0.01118 (19)	0.00405 (17)
Cl1	0.0638 (3)	0.0390 (3)	0.0490 (3)	-0.0072 (2)	0.0231 (2)	-0.01039 (19)
01	0.0611 (8)	0.0384 (8)	0.0553 (8)	0.0041 (6)	0.0086 (7)	0.0135 (6)
O2	0.0679 (9)	0.0641 (10)	0.0404 (7)	-0.0087 (7)	0.0211 (7)	-0.0005 (7)
O3	0.0579 (8)	0.0505 (9)	0.0408 (7)	0.0002 (6)	0.0051 (6)	-0.0117 (6)
O4	0.0798 (11)	0.0528 (10)	0.0716 (11)	0.0271 (8)	0.0036 (8)	-0.0075 (8)
O5	0.0571 (8)	0.0542 (9)	0.0442 (8)	-0.0168 (6)	0.0148 (6)	-0.0004 (6)
O6	0.0792 (11)	0.0456 (9)	0.0629 (10)	-0.0202 (7)	0.0220 (8)	-0.0142 (7)
C1	0.0384 (9)	0.0351 (9)	0.0338 (9)	0.0020 (7)	0.0032 (7)	0.0015 (7)
C2	0.0391 (9)	0.0331 (9)	0.0355 (9)	0.0006 (7)	0.0036 (7)	-0.0006 (7)
C3	0.0447 (10)	0.0365 (10)	0.0425 (10)	-0.0002 (8)	0.0074 (8)	0.0030 (8)
C4	0.0793 (16)	0.0702 (17)	0.0635 (15)	-0.0296 (12)	0.0298 (12)	0.0013 (12)
C5	0.0459 (10)	0.0396 (11)	0.0451 (10)	0.0014 (8)	0.0101 (8)	-0.0040 (8)
C6	0.0771 (16)	0.0788 (18)	0.0636 (15)	-0.0067 (13)	0.0150 (12)	-0.0344 (13)
C7	0.0385 (9)	0.0402 (10)	0.0391 (9)	-0.0024 (7)	0.0112 (7)	0.0013 (7)
C8	0.0486 (11)	0.0470 (12)	0.0563 (12)	0.0059 (9)	0.0106 (9)	-0.0075 (9)

supplementary materials

C9	0 0477 (11)	0 0534 (13)	0 0699 (14)	0.0085 (9)	0.0067 (10)	0 0039 (11)
C10	0.0436 (10)	0.0574 (13)	0.0519 (12)	-0.0085(9)	0.0062 (9)	0.0077 (10)
C11	0.0583 (12)	0.0552 (13)	0.0552(12)	-0.0025(10)	0.0002(9)	-0.0160(10)
C12	0.0500(11)	0.0002(10)	0.0564(12)	0.0035 (8)	0.0103 (9)	-0.0069(9)
C13	0.0638 (15)	0.086 (2)	0.0697 (16)	-0.0091(13)	-0.0085(12)	0.0109 (14)
015	0.0000 (10)	0.000 (2)	0.0097 (10)	0.0091 (19)	0.0000 (12)	0.0109 (11)
Geometric param	neters (Å, °)					
S1—O1		1.4291 (14)	С6—Н	6A	0.960)
S1—O2		1.4348 (15)	С6—Н	6B	0.960)
S1—C7		1.7557 (19)	С6—Н	6C	0.960)
S1-C1		1.8020 (18)	С7—С	12	1.388	(3)
Cl1—C2		1.7172 (18)	C7—C	3	1.390	(3)
O3—C5		1.324 (2)	C8—C9	9	1.387	(3)
O3—C6		1.442 (3)	С8—Н	8	0.930)
O4—C5		1.192 (2)	С9—С	10	1.380	(3)
O5—C3		1.318 (2)	С9—Н	9	0.930)
O5—C4		1.457 (2)	C10—0	211	1.385	(3)
O6—C3		1.201 (2)	C10—0	213	1.509	(3)
C1—C2		1.338 (2)	C11—0	212	1.377	(3)
C1—C5		1.509 (3)	C11—I	H11	0.930)
C2—C3		1.504 (2)	C12—I	412	0.930)
C4—H4A		0.9600	C13—I	H13A	0.960)
C4—H4B		0.9600	C13—I	H13B	0.960)
C4—H4C		0.9600	C13—I	H13C	0.960)
O1—S1—O2		119.16 (9)	Н6А—	С6—Н6В	109.5	
O1—S1—C7		110.09 (9)	O3—C	6—H6C	109.5	
O2—S1—C7		108.57 (9)	Н6А—	С6—Н6С	109.5	
01—S1—C1		109.24 (8)	H6B—	С6—Н6С	109.5	
O2—S1—C1		104.31 (9)	C12—0	С7—С8	120.5	8 (18)
C7—S1—C1		104.36 (8)	C12—0	C7—S1	120.2.	3 (15)
C5—O3—C6		115.46 (18)	C8—C'	7—S1	119.19	9 (15)
C3—O5—C4		116.47 (17)	C9—C	8—C7	118.79	9 (19)
C2—C1—C5		123.54 (16)	C9—C	8—H8	120.6	
C2—C1—S1		124.02 (14)	C/—C	8—H8	120.6	
C5—C1—S1		112.27 (13)	C10—0	C9—C8	121.5	(2)
C1 - C2 - C3		121.07 (16)	C10—0	С9—Н9	119.3	
		122.01 (14)	C8—C	9—Н9	119.3	7 (10)
C3-C2-CII		116.91 (13)	C9_C	10—C11	118.4	(19)
06-C3-05		125.76(17)	C9_C	10-013	120.4	(2)
06-C3-C2		121.84 (17)	C11—(-C13	121.1	(2)
05 - 05 - 02		112.40 (16)	C12—C	лі—СІ0 Гіі Ціі	121.6	(2)
O_{3} C_{4} H_{4} H_{4}		109.5	C12—(лі—піі 711 ціі	119.2	
		109.5	C10	$11 - \Pi I$	119.2) (10)
$\Pi_{4} = \Pi_{4} = \Pi_{4$		109.5		С12—С7 С12—Н12	119.05	(17)
$H_{4} = C_{4} = H_{4} C_{4}$		109.5		12—1112 12—H12	120.3	
HAB CA UAC		109.5	C_{10}	12—1112 Г12 Ц12А	120.3	
$11+D - C4 - \Pi 4C$		107.5	C10	лэ—птэа 712 ц12р	109.5	
04-03-03		120.32 (19)	C10-C	_1 <u>5</u> —1113B	109.5	

O4—C5—C1	121.76 (18)	H13A—C13—H13B	109.5
O3—C5—C1	111.53 (16)	C10-C13-H13C	109.5
O3—C6—H6A	109.5	H13A—C13—H13C	109.5
O3—C6—H6B	109.5	H13B—C13—H13C	109.5
O1—S1—C1—C2	-46.44 (17)	S1-C1-C5-O4	92.7 (2)
O2—S1—C1—C2	-174.88 (15)	C2-C1-C5-O3	101.9 (2)
C7—S1—C1—C2	71.26 (16)	S1—C1—C5—O3	-82.72 (16)
01—S1—C1—C5	138.23 (12)	O1—S1—C7—C12	6.95 (18)
O2—S1—C1—C5	9.79 (15)	O2—S1—C7—C12	139.03 (16)
C7—S1—C1—C5	-104.07 (13)	C1—S1—C7—C12	-110.17 (16)
C5—C1—C2—C3	-7.4 (3)	O1—S1—C7—C8	-172.52 (15)
S1—C1—C2—C3	177.75 (12)	O2—S1—C7—C8	-40.44 (18)
C5—C1—C2—Cl1	171.16 (14)	C1—S1—C7—C8	70.36 (17)
S1—C1—C2—Cl1	-3.7 (2)	C12—C7—C8—C9	1.2 (3)
C4—O5—C3—O6	-4.2 (3)	S1—C7—C8—C9	-179.35 (16)
C4—O5—C3—C2	175.59 (17)	C7—C8—C9—C10	0.0 (3)
C1—C2—C3—O6	-13.4 (3)	C8—C9—C10—C11	-1.5 (3)
Cl1—C2—C3—O6	167.92 (16)	C8—C9—C10—C13	179.8 (2)
C1—C2—C3—O5	166.77 (16)	C9-C10-C11-C12	1.8 (3)
Cl1—C2—C3—O5	-11.9 (2)	C13-C10-C11-C12	-179.5 (2)
C6—O3—C5—O4	-4.8 (3)	C10-C11-C12-C7	-0.6 (3)
C6—O3—C5—C1	170.36 (18)	C8—C7—C12—C11	-0.9 (3)
C2—C1—C5—O4	-82.7 (3)	S1—C7—C12—C11	179.65 (16)

